10 - 6 Secants, Tangents, and Angle Measures

secant: line intersecting a circle at two points

Theorem 10.12

Ex: Find m $\angle 2$ if m \overrightarrow{BC} = 30 and mAD = 20.

Theorem 10.13

If a secant and a tangent intersect at the point of tangency, then the measure of each angle formed is one-half the measure of its intercepted arc.

Ex: Find m \angle ABC if m $\stackrel{\frown}{AB}$ = 102.

Theorem 10.14

If two secants, a secant and a tangent, or two tangents intersect in the exterior of a circle, then the measure of the angle formed is one-half the positive difference of the measures of the intercepted arcs.

Two Secants

Secant - Tangent

$$mLA = \frac{1}{2}(mCD - BD)$$

Two Tangents

wo rangents
$$m\angle A = \frac{1}{2}(mBD2 - B2)$$

$$A$$

Ex: Solve for x.

Ex: Solve for x.

angle =
$$\frac{1}{2}(big-small)$$

$$11 = \frac{1}{2} \left(\frac{360 - x - x}{360 - 2x} \right)$$

$$11 = \frac{1}{2} \left(\frac{360 - 2x}{360 - 2x} \right)$$

Ex: Solve for x.

$$45 = \frac{1}{2}(180 - 10x)$$

$$45 = 90 - 5x$$

$$-90 - 90$$

$$-45 = 35x$$

$$-45 = 35x$$

$$9 = x$$

Homework:

10 - 6 WS